CT Basics
From: https://docs.iotawatt.com/en/02_05_12/CTbasics.html
12/02/23: Page Origin
CT Basics
What is a Current Transformer?
From Wikipedia:
A current transformer (CT) is a type of transformer that is used to measure
alternating current (AC). It produces a current in its secondary which is
proportional to the current in its primary.
In our case, the primary is one of the conductors of the circuit that we
want to measure, and the secondary is the output jack that plugs into the
IoTaWatt.
So without connecting anything directly to any high-voltage wiring, it’s
possible to get a scaled down measure of the primary current that can be
used to passively measure power (Watts) of a circuit.
Types of CTs
CTs come in various types, sizes, and capacities, and are made for a variety of
end uses. This tutorial doesn’t try to address all aspects. That’s what
Wikipedia does well. Here we’ll try to focus on the CTs that are suited to use
with the IoTaWatt in typical scenarios.
Physically, a CT needs to have an iron core through which one or more primary
conductors pass. The most basic type is a solid-core CT, where an iron doughnut
is wrapped with turns of wire. This type of CT is relatively inexpensive,
typically very accurate, but requires that the primary conductor be disconnected
and reconnected to install, thus exposing the installer to high-voltage and
disrupting the primary circuit.
Solid Core CT
Split-core CTs also require an iron core around the primary, but do so using two
hinged halves that mate to form the continuous iron loop. This type of CT can be
installed by simply snapping the two halves over an active primary conductor.
Split Core CT
Installation
**Warning!**
The installation of CTs can be dangerous and/or cause hazardous situations
resulting serious injury or death. Worldwide, there are a variety of electrical
conventions, regulations and standards. It is the user’s responsibility to
insure that the installer is qualified and all local codes and regulations are
followed.
To measure the current in a circuit, a CT is installed on one, and only one, of
the conductors in a circuit. Either the conductor is passed through the
solid-core, or the split-core is clamped over it.
CTs must have a load. Without a load, they will develop very high voltages that
can damage the core windings and/or create a safety hazard. When plugged into
the IoTaWatt, the secondary windings are loaded by a burden resistor.
Some CTs have protective diodes, called TVS diodes, that will protect against
damage when unplugged for short periods. Even if a diode protected CT is to be
unplugged for an extended length of time where the primary is energized, the CT
should be removed or shorted. Shorting will not damage the CT.
Polarity
CTs are manufactured to produce a secondary current that is in phase with the
primary current when installed with a particular orientation. In single and
split-phase installations it is important to observe polarity in certain
situations. In three-phase installations, it is imperitive that a polarity
convention be observed.
IoTaWatt will accept many different CTs from different manufacturers. While most
have some type of markings that can be used as a reference for polarity, there
is no universal standard. Typically, CTs from the same manufacturer will be
consistent with respect to source and load indicators.
And so it is for the Echun CTs that IoTaWatt, Inc makes available. When
installing, we use the notion of a source and a load. The source can be
conceptualized as where the power comes from and the load as where the power goes.
So for the mains, or incoming power to a service, the source would be the meter
side, or incoming power feed. The load would be the main circuit breaker or fuse
side.
For branch circuits, it would be just the opposite. The source would be the
circuit-breaker side, and the load would be the appliance side.
For a solar inverter connection, the source would be the inverter side, and the
load would be the circuit-breaker or other point of interconnect.
Here you can plainly see “This side toward source”
ECS1050
Here the arrow points source(K)->load(L)
ECS25200
This is an Echun ECS25200 clamp type CT used for 200A mains. Both sides are
shown. Note the arrows just under the opening. The arrow pointing up to the
opening indicates the source side, and the down arrow indicates the load side.
SCT013
This is the common SCT013 CT. If you are using them exclusively, the arrow can
be aligned consistently as source to load. But note that if using with the Echun
CTs, they must be installed with the arrow pointing from load to source. This
isn’t a fault of either manufacturer. It just reflects the lack of a standard
for how to connect the CT secondary to the 3.5mm jack used to connect.
Single and three-phase systems
All of the CTs in single or three-phase systems should be installed identically
with respect to load and source. This is especially important when configuring
three-phase systems using the Derived Three-phase method.
Split-phase systems
Most of North America and some Asian countries use a split-phase power system
with dual voltage, typically 120/240V. With this power system, there are two
mains with exact opposite phase. The voltage between either main and neutral is
120V, while the voltage between the two mains is 240V. This provides an
advantage of the relative safety of lower voltage in small appliance outlets,
while still providing high voltage for workhorse appliances like water-heaters,
ranges, and clothes dryers.
In these systems, while possible to use two voltage references, typical IoTaWatt
installations use a single reference that reflects the phase and voltage of one
of the sides, or legs as they are commonly called. The result is that CTs on the
other leg must be oriented the opposite way to be in phase with the opposite
voltage reference. This can be accomplished by physically installing them
reversed, or by installing all of the CTs the same way and checking the reverse
box when configuring.
There is more to installing CTs on 240V circuits in split-phase systems in the
next chapter.
240V Split-phase circuits
As explained above, split-phase systems can provide high-voltage for large
appliances. These circuits are connected to two adjascent CTs that are on
different legs. The usual convention is to use RED and BLACK wires or, as
explained below, BLACK and WHITE for pure 240V circuits.
240V only
When I say pure 240V circuits, I mean circuits that are usually a single load,
and do not have a third neutral wire to use either leg independently for 120V.
Examples of pure 240V circuits would be a resistive water-heater, well-pump, and
baseboard electric heater. A common giveaway for these circuits is that they
don’t have a neutral wire, and usually use two conductor with ground BLACK and
WHITE leads.
With these circuits, you can place the CT on just one of the conductors, and
check the double box in input configuration, directing IoTaWatt to double the
voltage value to report correct power and amperage.
120/240V circuits
Like the pure 240V circuits above, these circuits use two adjascent
circuit-breakers, but also have a neutral conductor. They usually have RED and
BLACK conductors on the circuit-breaker and a white neutral conductor that
connects to the neutral bussbar. Typical appliances are ranges, ovens, and
clothes-dryers. Circuits feeding sub-panels are usually of this type as well.
For these circuits, the two legs must be measured individually because the
current in each is not always the same. There are a couple of ways to do this.
The easiest way is to pass both the RED and BLACK conductors through the CT.
A CT will measure the total current of all of the conductors that pass through
the primary. But there is a twist. The phase of the current in each is exactly
opposite the other, so they they will cancel each other out and rather than get
the sum of the two, you can get the difference between the two.
The solution is to pass one conductor through in the opposite direction to the
other. There is a common trick for this. In most panels, the conductors are
brought past the CT in a U shape so that there is some excess wire in case the
circuit needs to be moved within the panel. You can use this U configuration to
easily reverse one of the conductors. In this case, the CT needs to handle the
combined capacity of the two circuit breakers when added together. An ECS1050
can probably be used up to about a 2x30A breaker.
Reversed CT conductors
The CT is clamped around the RED wire going down and the BLACK wire going up.
An alternate method, and recommended with high amperage sub-panel circuits, is
to put a separate CT on each leg. The CTs can be connected to two individual
IoTaWatt inputs and added together later for the total. With this method, each
of the two CTs only need match the capacity of one of the circuit breakers.
Two individual CTs can also be combined with a common headphone splitter and fed
into a single IotaWatt input. When combining this way, both CTs must be the same
model with an individual capacity sufficient to measure the combined capacity of
the two circuit breakers.